
RE A L - T I ME P RE D I C T I O NS

W I T H P O S T G RE S Q L A ND

P L / P YT H O N

Drishti Jain
@drishtijjain

About Me

o Software Developer / ML

o Published Technical Book

o Social Entrepreneur

o International Tech Speaker

o Career Coach – SkillUp with Drishti

@drishtijjain

Why Real-Time Predictions?

@drishtijjain

Real-Time Predications

Instant decision-
making

Improved user
experience

Competitive advantage Cost-effective solution

@drishtijjain

PostgreSQL Features

ROBUST RELATIONAL
DATABASE

EXTENSIBILITY WITH
PROCEDURAL LANGUAGES

BUILT-IN SUPPORT FOR JSON
AND OTHER DATA TYPES

@drishtijjain

PL/Python Advantages

Write PostgreSQL functions in Python

Access to Python's rich ecosystem of libraries

Seamless integration with database operations

@drishtijjain

Implementing ML Models in
PL/Python

@drishtijjain

Implementing ML Models in
PL/Python
The ability to implement ML models directly within the database using
PL/Python opens new possibilities for real-time predictions and data-driven
decision making.

@drishtijjain

Serialization
and
Deserialization
of ML Models

• Serialization is the process of
converting a complex object, like a
trained machine learning model,
into a format that can be easily
stored or transmitted.

• Deserialization is the reverse
process, reconstructing the object
from the serialized format.

@drishtijjain

Database storage

Databases typically store structured data, not complex Python
objects.

Serialization allows us to convert our ML models into a format
(like binary data) that can be stored in database columns.

@drishtijjain

Data transfer

When moving models between
systems or from the training
environment to the production
database, serialization enables easy
transfer of the model.

@drishtijjain

Persistence

Serialization allows us to
save the state of a trained
model, so we can load it
later without retraining.

@drishtijjain

In our PostgreSQL and PL/Python
context, we're using Python's pickle
module for serialization.

@drishtijjain

Here's how it works:

After training the model, we use pickle.dumps() to serialize it into
a binary format.

This binary data is stored in a PostgreSQL bytea column.

When we need to use the model, we retrieve the binary data and
use pickle.loads() to deserialize it back into a Python object.

@drishtijjain

Setting Up the Environment

@drishtijjain

Enabling PL/Python

@drishtijjain

Creating a Sample Database

@drishtijjain

Implementing ML
Models in
PL/Python

@drishtijjain

Linear Regression Model

@drishtijjain

Linear regression

• Linear regression is a statistical method for modeling the relationship between a
dependent variable (Y) and one or more independent variables (X)

• It assumes a linear relationship between variables

• The simplest form is simple linear regression with one independent variable:

@drishtijjain

Linear Regression Model

@drishtijjain

Linear Regression Model

@drishtijjain

Creating a Prediction Function

@drishtijjain

Prediction Function

@drishtijjain

Trade-offs in a Database
Context

@drishtijjain

Model Complexity vs. Prediction Speed

MORE COMPLEX MODELS (LIKE DEEP NEURAL
NETWORKS) MAY PROVIDE HIGHER

ACCURACY BUT SLOWER PREDICTION TIMES.

SIMPLER MODELS (LIKE LINEAR REGRESSION
OR SMALL DECISION TREES) OFFER FASTER

PREDICTIONS BUT MAY SACRIFICE SOME
ACCURACY.

IN A DATABASE CONTEXT WHERE REAL-TIME
PREDICTIONS ARE OFTEN NEEDED, YOU MAY
NEED TO BALANCE ACCURACY WITH SPEED.

@drishtijjain

Memory Usage:

1. More complex models require more
memory, which could impact database
performance.

2. Consider the scalability of your solution
as the number of concurrent predictions
increases.

@drishtijjain

Interpretability

In many business contexts, being able to
explain predictions is crucial.

While a complex neural network might
provide high accuracy, a simpler model
like a decision tree might be preferred
for its interpretability.

@drishtijjain

Training and Updating

Consider how often the model needs to be
retrained or updated.

More frequent updates might favor simpler
models that can be quickly retrained within

the database.

@drishtijjain

Data Volume and
Velocity

If you're dealing with high-
volume, high-velocity data,
you might need to opt for
models that can handle
streaming data effectively.

@drishtijjain

Regulatory
Compliance

In some industries,
regulatory requirements
might limit the types of
models you can use, favoring
more interpretable models.

@drishtijjain

Real-Time
Prediction Pipeline

@drishtijjain

Integrating Predictions into Queries

@drishtijjain

Trigger

@drishtijjain

Triggers for automating predictions

FRAUD DETECTION IN
FINANCIAL

TRANSACTIONS

REAL-TIME PRICING IN E-
COMMERCE

PREDICTIVE
MAINTENANCE IN

INDUSTRIAL SETTINGS

PERSONALIZED
CONTENT

RECOMMENDATIONS

@drishtijjain

Triggers for automating
predictions

Challenges:

• Database Performance

• Scalability concerns

• Keeping models up-to-date

@drishtijjain

Creating a Trigger
for Real-Time

Predictions

• We can automate the prediction process using
PostgreSQL triggers
• This trigger will automatically calculate and store a
prediction when new data is inserted

@drishtijjain

Inserting New Data and Getting Real-Time Predictions

@drishtijjain

Retrain the Model with all available data (NEW + Exisitng)

@drishtijjain

Updating the Model

@drishtijjain

Best Practices

@drishtijjain

Best Practices

Regularly
update and
retrain models

1
Monitor model
performance

2
Handle errors
gracefully

3
Optimize for
performance

4

@drishtijjain

Takeaways

PostgreSQL with PL/Python enables
powerful real-time predictions

Seamless integration of ML models
into database operations

Potential for enhanced decision-
making and user experiences

@drishtijjain

@drishtijjain

linkedin.com/in/jaindrishti/

medium.com/@drishtijjain

@geekyearthian

THANK YOU!

	Slide 1: REAL-TIME PREDICTIONS WITH POSTGRESQL AND PL/PYTHON
	Slide 2: About Me
	Slide 3: Why Real-Time Predictions?
	Slide 4: Real-Time Predications
	Slide 5: PostgreSQL Features
	Slide 6: PL/Python Advantages
	Slide 7: Implementing ML Models in PL/Python
	Slide 8: Implementing ML Models in PL/Python
	Slide 9: Serialization and Deserialization of ML Models
	Slide 10: Database storage
	Slide 11: Data transfer
	Slide 12: Persistence
	Slide 13: In our PostgreSQL and PL/Python context, we're using Python's pickle module for serialization.
	Slide 14: Here's how it works:
	Slide 15: Setting Up the Environment
	Slide 16: Enabling PL/Python
	Slide 17: Creating a Sample Database
	Slide 18: Implementing ML Models in PL/Python
	Slide 19: Linear Regression Model
	Slide 20: Linear regression
	Slide 21: Linear Regression Model
	Slide 22: Linear Regression Model
	Slide 23: Creating a Prediction Function
	Slide 24: Prediction Function
	Slide 25: Trade-offs in a Database Context
	Slide 26: Model Complexity vs. Prediction Speed
	Slide 27: Memory Usage:
	Slide 28: Interpretability
	Slide 29: Training and Updating
	Slide 30: Data Volume and Velocity
	Slide 31: Regulatory Compliance
	Slide 32: Real-Time Prediction Pipeline
	Slide 33: Integrating Predictions into Queries
	Slide 34: Trigger
	Slide 35: Triggers for automating predictions
	Slide 36: Triggers for automating predictions
	Slide 37: Creating a Trigger for Real-Time Predictions
	Slide 38: Inserting New Data and Getting Real-Time Predictions
	Slide 39: Retrain the Model with all available data (NEW + Exisitng)
	Slide 40: Updating the Model
	Slide 41: Best Practices
	Slide 42: Best Practices
	Slide 43: Takeaways
	Slide 44: THANK YOU!

