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About Me

o Software Developer / ML

o Published Technical Book

o Social Entrepreneur

o International Tech Speaker

o Career Coach – SkillUp with Drishti
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Why Real-Time Predictions?
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Real-Time Predications

Instant decision-
making

Improved user 
experience

Competitive advantage Cost-effective solution
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PostgreSQL Features

ROBUST RELATIONAL 
DATABASE

EXTENSIBILITY WITH 
PROCEDURAL LANGUAGES

BUILT-IN SUPPORT FOR JSON 
AND OTHER DATA TYPES
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PL/Python Advantages

Write PostgreSQL functions in Python

Access to Python's rich ecosystem of libraries

Seamless integration with database operations
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Implementing ML Models in 
PL/Python
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Implementing ML Models in 
PL/Python
The ability to implement ML models directly within the database using 
PL/Python opens new possibilities for real-time predictions and data-driven 
decision making.
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Serialization 
and 
Deserialization 
of ML Models

• Serialization is the process of 
converting a complex object, like a 
trained machine learning model, 
into a format that can be easily 
stored or transmitted. 

• Deserialization is the reverse 
process, reconstructing the object 
from the serialized format.
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Database storage

Databases typically store structured data, not complex Python 
objects. 

Serialization allows us to convert our ML models into a format 
(like binary data) that can be stored in database columns.
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Data transfer

When moving models between 
systems or from the training 
environment to the production 
database, serialization enables easy 
transfer of the model.
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Persistence

Serialization allows us to 
save the state of a trained 
model, so we can load it 
later without retraining.
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In our PostgreSQL and PL/Python 
context, we're using Python's pickle 
module for serialization. 
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Here's how it works:

After training the model, we use pickle.dumps() to serialize it into 
a binary format.

This binary data is stored in a PostgreSQL bytea column.

When we need to use the model, we retrieve the binary data and 
use pickle.loads() to deserialize it back into a Python object.
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Setting Up the Environment
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Enabling PL/Python
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Creating a Sample Database
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Implementing ML 
Models in 
PL/Python
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Linear Regression Model
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Linear regression

• Linear regression is a statistical method for modeling the relationship between a 
dependent variable (Y) and one or more independent variables (X)

• It assumes a linear relationship between variables

• The simplest form is simple linear regression with one independent variable:
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Linear Regression Model
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Linear Regression Model
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Creating a Prediction Function
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Prediction Function
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Trade-offs in a Database 
Context
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Model Complexity vs. Prediction Speed

MORE COMPLEX MODELS (LIKE DEEP NEURAL 
NETWORKS) MAY PROVIDE HIGHER 

ACCURACY BUT SLOWER PREDICTION TIMES.

SIMPLER MODELS (LIKE LINEAR REGRESSION 
OR SMALL DECISION TREES) OFFER FASTER 

PREDICTIONS BUT MAY SACRIFICE SOME 
ACCURACY.

IN A DATABASE CONTEXT WHERE REAL-TIME 
PREDICTIONS ARE OFTEN NEEDED, YOU MAY 
NEED TO BALANCE ACCURACY WITH SPEED.

@drishtijjain



Memory Usage:

1. More complex models require more 
memory, which could impact database 
performance.

2. Consider the scalability of your solution 
as the number of concurrent predictions 
increases.
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Interpretability

In many business contexts, being able to 
explain predictions is crucial.

While a complex neural network might 
provide high accuracy, a simpler model 
like a decision tree might be preferred 
for its interpretability.
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Training and Updating

Consider how often the model needs to be 
retrained or updated.

More frequent updates might favor simpler 
models that can be quickly retrained within 

the database.
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Data Volume and 
Velocity

If you're dealing with high-
volume, high-velocity data, 
you might need to opt for 
models that can handle 
streaming data effectively.
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Regulatory 
Compliance

In some industries, 
regulatory requirements 
might limit the types of 
models you can use, favoring 
more interpretable models.
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Real-Time 
Prediction Pipeline
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Integrating Predictions into Queries
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Trigger
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Triggers for automating predictions

FRAUD DETECTION IN 
FINANCIAL 

TRANSACTIONS

REAL-TIME PRICING IN E-
COMMERCE

PREDICTIVE 
MAINTENANCE IN 

INDUSTRIAL SETTINGS

PERSONALIZED 
CONTENT 

RECOMMENDATIONS
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Triggers for automating 
predictions

Challenges:

• Database Performance

• Scalability concerns

• Keeping models up-to-date
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Creating a Trigger 
for Real-Time 

Predictions

•  We can automate the prediction process using 
PostgreSQL triggers
•  This trigger will automatically calculate and store a 
prediction when new data is inserted
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Inserting New Data and Getting Real-Time Predictions
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Retrain the Model with all available data (NEW + Exisitng)
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Updating the Model
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Best Practices
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Best Practices

Regularly 
update and 
retrain models

1
Monitor model 
performance

2
Handle errors 
gracefully

3
Optimize for 
performance

4
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Takeaways

PostgreSQL with PL/Python enables 
powerful real-time predictions

Seamless integration of ML models 
into database operations

Potential for enhanced decision-
making and user experiences
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@drishtijjain

linkedin.com/in/jaindrishti/

medium.com/@drishtijjain

@geekyearthian

THANK YOU!
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